contents next up previous
Next: Ordinary Kriging Constraints Up: Function Object Classes Previous: Monte Carlo Sampler

Subsections

Simple Kriging Constraints

SK_constraints

In simple kriging, the error variance is minimized without any additional constraint. The kriging system is then:

$\displaystyle \left\{\vphantom{ \begin{array}{l}
Var \Big( \sum_{\alpha=1}^{n}...
... u})-m(\rm {\bf u})] \Big) \quad \textrm{is minimum} \\
\end{array} }\right.$$\displaystyle \begin{array}{l}
Var \Big( \sum_{\alpha=1}^{n} \lambda_{\alpha} ...
...(\rm {\bf u})-m(\rm {\bf u})] \Big) \quad \textrm{is minimum} \\
\end{array}$

or, if secondary variables are accounted for:

$\displaystyle \left\{\vphantom{ \begin{array}{l}
Var \Big( \sum_{\alpha=1}^{n}...
...- [Z(\rm {\bf u})-m] \Big) \quad \textrm{is minimum} \\
\end{array} }\right.$$\displaystyle \begin{array}{l}
Var \Big( \sum_{\alpha=1}^{n} \lambda_{\alpha} ...
...  \qquad - [Z(\rm {\bf u})-m] \Big) \quad \textrm{is minimum} \\
\end{array}$

SK_constraints computes the kriging system size, resizes the kriging matrix and the second member, and returns the system size.



Where Defined

In header file <kriging.h>



Model of

Kriging Constraint



Type Requirements

See 2.4 for a thorough description of the requirements on the matrix library.



Members


contents next up previous
Next: Ordinary Kriging Constraints Up: Function Object Classes Previous: Monte Carlo Sampler
nicolas
2002-05-07